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Motivation:
= Infrared cameras often suffer from low-contrast, low-resolution and
blurred detalls.
= These problems could limit the feasibility of different infrared imaging
applications.
Objective: To enhance the visual quality of thermal images in order to
Improve the pedestrian detection performance.
State-of-the-art:
= Traditional methods based on Histogram Equalization (HE) and
Contrast Limited Adaptive(CLAHE)
» Deep Learning methods (VDSR, SRCNN, TEN, CDN-MRF)
» Adversarial Learning methods(SRGAN, DCGAN) y
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 New Thermal Enhancement-GAN (TE-GAN) architecture basically
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Fig.2: Examples of thermal images from KAIST datatset.
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1.Visual quality evaluation in terms of:
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KAIST dataset [3].

Total number of frames(RGB and thermal): 95k
Training set : 7601 thermal images
Testing set : 2252 thermal images

HE CLAHE TE-GAN
= [The Peak Signal to Noise Ratio (PSNR) PSNR 7 81 11.92 13.92
= The Structural Similarity Index Metric (SSIM)
SSIM 0.34 0.37 0.50

Tab.1l: Comparison of the TE-GAN architecture
to HE and CLAHE.

HE CLAHE Proposed TE-GAN

Original Image

iInspired from EnlightenGAN [1] and DnCNNJ2].

* The proposed architecture is composed of two modules with a post-
processing step to cover different limitations of thermal images.

* Training TE-GAN architecture according to an overall loss function that
combines perceptual, content, global and local losses
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Fig.1l :The proposed TE-GAN architecture composed of two modules:(a) contrast
enhancement and (b) denoising.

{ 1.Contrast Enhancement Module

To Improve the contrast using U-NET generator, global and local

discriminators.
1 Perceptual Loss

To compute the distance between the output image and the ground-truth
based on high-level representations extracted from VGG pre-trained

Fig.3: Qualitative results of our proposed architecture TE-GAN compared to other
enhancement methods.

2. Detection results with and without enhancement in terms:

Testing Metri Without With
N\ conditions etric enhancement enhancement
The mean Average EreCISIon (MAP) Y= oo 063
The Log Average Miss Rate (LAMR) Day
LAMR 0.41 0.40
MAP 0.66 0.73
Night
LAMR 0.26 0.20
! MAP 0.62 0.65
A
LAMR 0.45 0.43

Tab.2: Comparison of the detection performance of YOLOv3
detector with and without TE-GAN enhancement.

Original Image Detection without enhancement Detection with enhancement

Fig.4:Some results of pedestrian detection using YOLOv3 on thermal images from KAIST

\ model. _/ \ dataset with and without TE-GAN enhancement.
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2. Denoising Module
To remove the noise level by a CNN generator and a global \/ The effectiveness of the proposed TE-GAN architecture is proven by obtaining better
discriminator guantitative and qualitative results compared to the original thermal images and to
1 Content Loss ' other existing enhancement methods.
To minimize the low-level content errors between the noisy image and | _ | :
the denoised generated image using Pixel-wise MSE,. (\/ The _detectlon _result§ using YOLOV_B detector are improved by means of TE-GAN
\_ ) architecture with a significant margin.
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3 POS’[-pI’OCGSSi ng Module @ Extension of the proposed TE-GAN architecture to incorporate a super-resolution
. . ' . \=/ module.
To highlight the edges and decrease the visual blur effects by
' means of a convolutional edge enhancement filter ] (r@‘ Extend the proposed approach to other applications such as people tracking and
\\ \w) activity recognition. R
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